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On Thermomechanics of Polymers in the

Thansition and Rubber Regions

by

M. J. Crochett and P. M. Naghdi~

Abstract. A nonisothermal theory of viscoelastic media , motivated by- thermo-
mechanical behavior of polymeric materials in the transition zone between the
rubber and glassy states, was developed previously by Crochet and Na ghdi and
this included as a special case a theory with small deformation suitable for
thermorheologically simple materials. The object of the present paper is to
modify the form of the previouz constitutive equations slightly in order to
extend the validity of the theory to the rubber region in which the medium
behaves elastically.
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1. Introduction. General background.

This paper elaborates on some aspects of a non-isothermal theory of visco-

elasticity, which was developed previously by Crochet and Naghdi (~-8) for

application to polymeric materials in the so-called transition zone between the

rubber and the glassy states, and its slight modification in order to extend the

validity of the theory also to the rt~bber region. Before describing the contents

of the paper, by way of background,we recall that an appropriate phenomenological

description of polymeric materials is given by the elastic model when)heY may

be classified as rubbers and ~~~sses (or resins). After a cycle of tapplication

and removal of external load, both rubbers and glasses return without delay

to a reference stress-free configuration. Although the rubber and glassy states

are both characterized by a disordered and amorphous structure, their mechanical

properties are essentially different: rubbers are soft and highly deformable,

while glasses are hard and brittle. Moreover, they exhibit an essential dif-

ference in the temperature dependence of their elastic properties: the thermal

behavior of glasses is similar to that usually encountered in metals, while

rubbers exhibit peculiar properties , such as the thermoelastic inversion , which

have been the object of extensive studies (see , for example , Treloar [1, Ch. 2 1).

When a polymeric material in the rubber state is cooled over a large

temperature range , eventually it becomes a glass. Of course , the transition

from a rubber to a glass is not discontinuous . To elaborate , consider the

beha vior of polymers which , under small deformations , ca n be characterized by

constitutive equations of linear isotropic viscoelasticity. The nature of

transition from a rubber to a glass may then be described in terms of the

variation with frequency of the real part of the dynamic relaxation modulus ,

say G’(~). Although the material response in both the rubber and glassy

states may be characterized, respectively-, by a low and a high constant value

of G’(w), the complex modulus is not a constant in the intermediate temperature

• ~~~~~~~~~~~~~~~ ~~~~~
. ~~~~~~~~~~~~~~~ ~~~~~~~~ -- • - • ~~~~ •



ranges . Moreover , G ’(w) at low fr equencies has a value close to that in the

rubber region, while its value at high frequencies tends to that of the glassy

• state. The doma in of temperature in which t�ie real part of the complex modulus

exhibits a continuous change from the rubber state to the glassy state Is called

the transition zone between rubberlike and glasslike behavior , and a rough

estimate of the location of the transition zone on the temperature scale Is
*given by the glass transition temperature.

The variation of the complex moduli with frequency Is a clear indication

of the viscoelastic behavior of polymeric materials in the transition zone. It

may be noted that the transition zone in which the viscoelastic character

dominates extends generally over a wide temperature range , and the dependence

of the thermoviscoelastic response on temperature is inherently nonlinear.

The difficulties associated with the nonlinear dependence of the viscoelastic

• response on temperature are somewhat lessened in view of an interesting

observation made on a class o~ polymeric materials, known as ‘thermorheologically

simple , ’ hereafter abbreviated as T.M.S . Cons ider , for example , the relaxat ion

functions at various fixed temperatures , plotted against a logar ithmic time-scale:
S

it is found that the various isothermal curves plotted in this manner superimpose

fairly well upon each other b~r a horizontal shift . Essentially, on the

basis of da ta obtained at different fixed temperatures , one can construct a
1
4~ shift function whi ch together with any one of these curvest determine the physical

properties of polymers in the transition zone.

It should be point ed out that most often the “master ” curves mentioned

above are limited to the transition zone and do not extend to the plateau zones

in the rubber and glassy states . These “master ” curves are constructed on the

For a discussion of the glass transition temperature, the reader is referred
to Fnrry [2 , p. 307] or Christensen [3, p. 921.

t~;uch curves in polymeric literature are usually referred to as a “composite”
or “master” curve .

-
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basis of isothermal curves and, in general, they- give no indication of the

transient character of the moduli when the temperature varies with time.

• It should be recalled that a transition zone may also be defined with

referenc e to the mechanical behavior of uncrosslinked polymers , polymeric

solutions , and inorganic glasses at various constant temperatures. For these,

the transition occurs between a glassy state at low temperature , and the liquid

state at high temperature.

In a series of papers published over the last few years , Crochet and Naghdi

[1i~_81 have shown how the material behavior in the transition zone between the rubber

• and glassy states , or between the glass and the liquid states , may be described by-

a special or restricted theory of simple materials. Essentially, after defining

what is meant by thermal dilatation, they postulate a special form for the specific

free energy based on the material behavior at a reference temperature. More

specifically , their restricted theory of simple materials with fading memory ,

• apar t from the heat flux and the modified time scale , requires the knowledge

of three functionals. One of these represents the history of the thermal

stretch under vanishing stress, while the sum of the remaining two functionals

represents the free energy. Of’ the latter two functionals again one of’ them

• depends on the temperature history only and the other is determined from the

knowledge of the isothermal free energy functional. The modified time scale,

utilized in the development of the theory, is prescribed by a funct ional which

depends on the past history of temperature only.

In sect ion 2, we show how the special class of materials considered

previously may be also characterized on the basis of its stress-strain relations

• in the transition region ; the form of the free energy is then deduced by inte-

gration of the constitutive relation for stress. This leads us to consider a

modification of our previous constitutive relations , in order to extend the

va Lidity of the theory- also to the rubber regicn In which region the material
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behaves elastically. This is discussed in more detail in section 3, where we

derive the form of the internal energy in the rubber region , and calculate also

an example based on the data of’ Wood and Martin [9]. In thi s connection , it

should be noted that thermomechanics of rubberlike materials has been dealt

with to some extent by Besseling and Voetman [10] and more generally by ‘ 
~• 

-~

Chadwick [ii]. As indicated in the latter part of section 3, our results for

the rubber region agree with those obtained by Chadwick Ill] whose develo~ nent

is based on an entirely different model .
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2. Constitutive equations in the transition zone.

Let X denote a material point of a body and designate a neighborhood of X

by ii. It is convenient to introduce several configurations for the neighborhood y~.

Thus, let Kc, be the confIguration occupied by h in a fixed reference state, iC(t)

the corresponding configuration at the present time t and K(,~) the configuration

occupied by h at time r~~t. Also, in what follows, for simplicity we consistently

use the notation K=K (t). Suppose that now the body is subjected to a thermal

history- specified by a uniform temperature field 9(T), -~~<~~~t. Under such

thermal histories, we denote by K (T) the configuration of ~ at time i when

the stress history vanishes identically and also use the notation K = K ( t )

It may be noted here that our reason for considering a neighborhood

of a material point is due to the fact that, in general, it is not possible to

*• determine a global configuration corresponding to K when the temperature field

is not spatially homogeneous. Alternatively, since we are concerned with

• • . constitutive equations which are valid at every material point, we may establish

our main results by employing spatially homogeneous strain and temperature fields.

The various configurations of the neighborhood ~ introduced above, along with

corresponding deformation gradients, are schematically depicted in Fig. 1.

*The stretch tensor of the material point X in the configuration ~c relat ive

to the reference configuration Kc,~ 
called the thermal stretch, will be denoted byt

= i~(t) = 
~ 

(Br(t_8) ; 8) , (2.1)

where the subscript r is used to indicate the restriction on the domain of the

• history of the temperature 9(t-s) to positive values of s, thus excluding the

• 
present value e= ~(t). We also recaLl the equation

tThe use of an overbar is for later convenience and in order to conform with
the notation used previously- [8].
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(2. 2)

which relates the mass density p = p ( t)  at X in the configuration K to its

value p0 in the reference configuration 
~~~ 

In our previous developments [li_ 81 ,

guided by experimental observations (see, e.g., Ferry [2, Ch. 11]) on polymeric

materials, the constitutive equation for the stress in the transition region

was constructed on the assumption that at the reference temperature 80 the

Cauchy stress T is given by a known isothermal functional ~ of the history of

the deformation gradient F(T), -co< r~~t , relative to ~-~ 0

• T ( t)  = g (F (t-s) ; F) . (2 .3)
0< s<

Suppose now that the body is maintained at the uniform tempera-

ture different from while it is subjected to a deformation

history specified by the deformation gradient F ( r )  of the configura-

• tion K ( T )  relative to~ ~C*( T ) .  For a class of materials exhibiting T.M.S.

characteristics, the stress constitutive equation in terms of a stress

functional whose arguments are the deformation gradients and their history

relative to i may then be expressed as

*
P1 * * *T(t) = — g (F (t— ~~~) ; F ) , (2.1.~)

where p
~ 

is the mass density of K , 
~ 

is a modified time scale defined by

~s Ø(9~
) (2.5)

and is called a shift function. A constitutive equation of the form (2.L~.)

• provides a good agreement with exper imental results in the transition zone . In

thia connection , it may be emphasized that the constitutive equation (2Ji ) holds

* * *• Here, instead of K (T), we can write ~ = ~ (t) since the t emperature field is
also uniform in time and hence K*(.r ) is always the same for all ~~~~

6.
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)
at constant temperatures and , as yet , constitutive equations which would account

for the effect of variable temperature fields have not been introduced. Thus,

the time scale which occurs in (2.14) is only a function (rather than a

functional) of temperature; and it is , in fact , the basis of the theory of

T.M.S. materials, which prior to the developments in [1i~], was confined to only
*infinitesimal deformation.

We now turn to the consideration of a modified form of our previous

constitutive relations (2.11). The modification is motivated by the definition

of the so-called “ideal rubber” in the literature on polymer chemistry. Let

~~~ and $ denote the specific internal energy, the specific entropy and the

specific lielmholtz free energy, respectively. Then, briefly,an “ideal rubber”

is one (Flory [13, Ch. ii]) whose configurational changes do not affect the

value of the internal energy. It follows that the strain affects the specific

Ilelmholtz free energy only through its contribution to the specific entropy;

and, with the use of the classical relation 4 - 91~, one cond uces that the

expression for the stress tensor for an “ideal rubber” is proportional to the

temperature 9. The same argument is used in the work of Rouse [114], where the

Thctor 9 arises from the assumption that every configuration of the coiled

• molecules in a dilute solution has the same internal energy. Experimental

results reported by Treloar [1], however , show that the volumetric changes only

slightly affect the internal energy , and we arrive at essentially the same

- -  - conclusion in the present paper.

Keeping the above background in mind, it seems to be sufficient to introduce

~ I 
• a slight modification of the stress constitutive equation (2.14) and write

1
• •

A paper by Lianis [12] on the subject , in the presence of finite deformation ,
appeared about the same time when [111 was completed. However, his deve1o~~entIs too special and does not account for the past history of thermal dilatation. 

“•— —-—— —--•• — —--—--. .J~~ -~~~~~~~ • ••—~
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p1 91 * * *T(t) = — ~ (~~ (t-~~ ) ; F ( t ) )  . (2.6)
0 O < s < c o

The above constitutive equation differs from (2. 14) by only the factor

• i .e., the ratio of a constant uniform temperature 9
~ 

to the reference temperature

~~~~~~ 
Moreover , the shift function associated with in (2.6) is not the same

a~ that in (2.5) .  A further justification for writing (2.6) will be dis-

cussed in Sec . 3. Here, however, we note certain implications of an assumption

of the form (2.6). In a theory- valid for the transition zone , say that of the

ordinary T.M.S. materials , the shift function serves as a basis for constructing

• the so-called “master curve” for T.M.S. materials. The presence of a factor of

the type 91/80 r equires a different shift function , but as noted by Ferry [2 ,p.299]

the difference between the two expressions for the stress is of no consequence

in the transition zone. Here, it may be worth recalling that the extension of

Rouse ’s theory [114] for dilute polymer solutions to undiluted polymers evidently

requires also the presence of a factor p~e1/p090 preceding an isothermal func-

tional; in this connection, see also Ferry [2, pp. 206-213].

Most of the experimental investigations on the behavior of polymeric

I- - - materials have been limited to uniform (time-independent) temperature fields

which are different from a reference temperature. When the temperature field

is regarded to vary with time, the constitutive equations (2.14) and (2.6) may

be generalized in the form 4 -
•

*
T(t) 2.... ~~ (~~(t-~~) ; F

*) (2.7)poO<s<Q, —

• and

*
~ 0 * * *T(t) = ~~

—
~~~~ -- ~ (F (t-~ ) ;F ) , (2.8)

S —

— 8.
5—— __ __5•___ __ • ~~~~~• ~ - •• • - --- . -  - -~~~~~~~~. ~~~• •• ~~
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* *respectively, where p refers to the mass density in the configuration K at

time t introduced earlier in this section, while F*(T) stands for the deforma-

tion gradient relative to K (T). Also, in (2.7) and (2.8), the modified time

scr, 1o 
~ 

is now a functional of the past history of temperature. A simple

form of such a functional, namely

s = j Ø [9(t-u))du
- 0

was first introduced by Hopkins [15] and adopted subsequently by Morland and

Lee [16] in the cont ext of the theory of T.M.S. materials with infinitesimal

• 
deformation. For a discussion of a more general functional of this kind, see [ 14].

- 
In a number of papers (see, e.g., [8], which contains additional references),

limited to the transition zone of polymers, Crochet and Naghdi started their

• 

• 
developments by examining the stress constitutive equations and motivated an

appropriate assumed form for the free energy functional from which (2.7) could

be derived. For the purpose of extending the previous work to the rubber region,

here we begin by introducing first the form (2.7) or (2.8) as an assumption for the

stress constitutive equation and then ask the following question: if the medium

is a simple material with finding memory, what is the most general form of the

free energy functional which will lead to the forms (2.7) or (2.8) under the

conditions of fading memory? As will become evident presently, even in the case

of (2.7) the resulting free energy functional will be slightly different from

thos-’ discussed in [14,5, 6,7,8]. To elaborate, we recall that for the nonisothermal

theory of simple materials with fading memory, the specific free energy $ may be
5 

. specified by

• 
. $ = ~ [~~,(t-s),9(t-s) ; C,9] , (2.9)

-c,<s<0

where C is the right Cauchy-Green strain tensor . In terms of the free energy

IlL -- -_- — —- -s S — —- p_ i__ — —
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response functional ~~, the Cauchy stress T is given by~

T(t) = 2_ F((~~ + _
~~ )(p~~))F

T 
. (2.10)po — — —

In view of the definition (2.1) and the decompQsition

~er) = *~~
_
() (2.11)

employed previously [6,8], without loss in generality, the free energy (2.9)

may be expressed in the alternative form

$(t) = ?F [~~(t-~5),9(t-s) ; C~,e] , (2.12)
• -oo<s<0

where

• * * T *C (
~

) = [F (1.)] F (T)  (2.13)

- - and ~ in (2.12) is now a different functional from that in (2.9). By direct

$ calculation, instead of (2.10), the stress constitutive equation in terms of

- the functional ~ in (2.12) is easily found to be

or 

T(t): F~ (~~ + *T~~ Po~~~ 
(2.114)

T(t) = 2... 1 
* 
F*[(_~~ + —~~ )(p0~))F~~ , (2.15)

- ~o det F ~C ~C

where we have also used the identity

-: = p*[det F*]
_l 

, (2.16)

which follows from (2.2) and (2.11). It may be emphasized that at this stage

the expression (2.15) is fully general within the scope of the theory of simple

materials with fading memory.

We now restrict ourselves to a special class of simple materials with fading

memory corresponding to the behavior of polymers in the transition zone. This

•tThe expression (2.10) along with one for the specific entropy, in terms of the
partial derivatives of the free energy response functional, are a form of the

• generalized stress derived by Coleman [17] with the use of the Clausius-Dahem
inequality. However, it should be noted that the same expressions follow from
the results which have been obtained in a recent paper by Green and Naghdi [18]
on the basis of an entirely new approach to continuum thermodynamics. The latter
paper contains also a discussion of some shortcomings of the Clausius-Duhem
inequality.

IIILL _ _
~ ~~a -., ., ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ • ~~~~~~~~~~~~~~~~~~~~~~~~~
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can be accomplished by identifying the right-hand side of (2.15) either with

(2.7) or (2.8). In the former case, we have the identity

(~
-. + ~~~~(p  ~ )[~~ (t-~~ ),9(t-s)  ; C*,e1

• ~C ~C 0 ’ Z S < a D

* *_ ~~ * * * *T-l= det F (F ) ~ [F (t-~ ) ; F )(F ) , (2.17-)• — — —C S — —0 < s < a ~
• *which relates the isothermal stress functional S to the free energy functional

~~~. It then follows that corresponding to the stress (2.7) the free energy

must be of the form

~(t) = i [c*(t~~~) ; C~] + ~ [~~(t-~5),9(t-s); 9] . (2.18)
0<s<~ 

‘
~~ 0 < s < c o

• ~• It should be noted that the functional ~ does not depend on the present value
*C and hence makes no contribution to the stress response. The essential

difference between (2.18) and our earlier developments (e.g., [8]) is that

previously the part of the free energy which corresponds to cB above was assumed

to be independent of the past history of strain altogether; here, we have

started with (2.7) as an assumption and then derived (2.18).

If we use (2.8) as a starting assumption, then in an entirely similar

manner we find

~i ~~ [C*(t..~~) ; c*] + B {~~(t-~~),~ (t-s) ; 9] . (2.19)
o 0<s<~ 0<s<~

H
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3. Extension to the rubber zone.

The relationship between the time variables s and at a fixed uniform

temperature 
~l 

is indicated in (2.5).  With reference to this expression , a

study of polymeric materials and inorganic glasses reveals that in the rubber

region the shift function 0(91) becomes large for increasing values of 
~l’ 

while

in the glassy region the function becomes small for decreasing values of

To gain a better understanding of the nature of the constitutive relations

under discussion in the rubber zone, it is instructive to examine the limiting

behavior of the modified history of a given strain history when the temperature

roaches that in the rubber region. In the rubber region 0(9k) >>1 and , by -- -  

- •

virtue of ( 2 .5) ,  ~~ <<s for all values of s. It follows that the effect of a

temperature increase is equivalent to a retardation of the strain history, and

wh~n 9 becomes large we obtain for all s

1im[C(t-~~ ) -C1~ ( s ) j  = 0

where l+ (s)  denotes the constant function with value 1.

The above discussion suggests that the functional ~ in (2.18) and (2.19)

becomes a function of the present value £ in the rubber region. If we make the

further assumption that the functional ~ is independent of the past history of

th ~~~ temperatur e in the rubber region , then it follows that £ is independent of

the past history of strain c (t-~5) since the variable itself is dependent

upon the temperature history. Hence, the functional B reduces to a function of

temperature only. Thus, the above assumptions require that in the rubber zone

the expressions for the specific Helmholtz free energy corresponding to (2.18)

and (2.19) assume the forms:

• ~( t)  = $
*(C*)B( ) (3.1)

and

12.

_•—•••-•-—.~ —••_.~~-- -_.--
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• 9 * *~(t) = — $ (C )+B(e) , (3.2)

• respectively. The corresponding expressions for the Cauchy stress calculated

from (3.1) and (3.2) are given, respectively , by

T(t) = ~~~T*(F*) (3.3)— —
and

T ( t )  2_ G
T
*
(F

*
) .

While the inclusion of the factor 0/90 
in (2.8) is not essential in the

transition zone, as remarked previously in section 2 the situation is quite

different in the rubber state. Rubber elasticity has certain distinctive —

features and characteristics when compared to other elastic materials or the

elastic range of other materials such as metals; for details see Treloar

[1, Ch. 21 and Flory [13, Ch. 113. Apart from being able to sustain very

large deformations and to recover their initial states upon unloading, rubbers

exhibit a peculiar behavior with respect to temperature changes. In early experi-

ments in which a simple tension test was utilized, to within an experimental

error not exceeding a few per cent, it was found that the stress plotted against
4.

the extension ratio is proportional to the absolute temperature for values of’ the 3

extension ratio up to 2. This extension ratio is obtained by comparing the length

of the specimen under tension at temperature 9 with the length of the stress-free

specimen at the same temperature. Thus, the extension ratio may be regarded as the
*relative elongation from a configuration such as K (defined in Section 2) and the

• present configuration ic and correspond~ to that which can be calculated from

(2.13) in terms of the definition of F . The same type of results were also

found in the corresponding simple shear experiments. Inasmuch as the ratio p
~/p0

• 
. differs from one by only a few per cent and that this is of the same order as

the experimental error mentioned above, we may conclude that the stress constitu- —

tive equation (3.14) could possibly provide an adequate description of’ the rubber

13.
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behavior while (3 .3)  does not~
Another distinctive feature of rubber behavior is the thermoelastic

inversion phenomenon~ Briefly, in a simple traction experiment, a plot of’

tensile force versus temperature for fixed values of the elongation (from K0

to K) shows that a value of the strain exists below which the tensile force

decreases with temperature, while it increases above that same limit . In this

connection , we note that it can be readily demonstrated (although the calcula-

tions are lengthy but routine) that (3 . 14) exhibits thermoelastic inversion,

while (3.3) does not. Moreover, the detailed calculations (not included here)

*• also show that for isometric, isotonic and isentropic simple tension tests,

thermoelastic inversion occurs at the strain

e

where ~ is the coefficient of thermal expansion at the reference temperature 9~
.

For the first order estimate of the thermoelastic inversion, the strain given

by (3.5) coincides with the values found by Chadwick [11] on the basis of a dif-

• ferent expression for the free energy. qualitatively, the appearance of’ the

thermoelastic Inversion may be explained as follows: Consider a cylindrical

tensile specimen and choose the X1-axis along its longitudinal axis in the

~The same argument holds when the stress is calculated per unit area of
• the configuration K() or the configuration K~, in view of the fact thatthe ratio p

~/p0 
is very nearly equal to one and that the rubber is very

nearly incompressible under isothermal conditions.

tWe wish to acknowledge a written discussion received from Professor P. Chadwick
which , in turn , called our attention to this point while the investigation was
in progress.

The distinguishing features of these tests are as follows: in an isometric test
the length of the cylindrical specimen is held fixed; in an isotonic test the
longitudinal stress and the lateral pressure are held fixed; and in an isentropic
test the specimen is extended without change in entropy.

l~4. 

~~~~~~ ~• ~~~~~ • - ~~~~~~~~~~~~~~~~~ . _~~~~ •



undeformed reference state. Further, let the x1-axis be in the direction of

elongated specimen resulting from a one-dimensional homogeneous extensional

deformation. Then, the position of a point on the longitudinal axis in the

deformed state Is x1=X1+u1(X1) , where u1 is the relative longitudinal dis-

placement, and the component of the deformation gradient F11=1+~u1/~X1. Also,

we denote the corresponding component of the Cauchy stress by t11. We observe

that for a fixed value of F11, the component F~~ will decrease when 9 increases

in view of the thermal dilatation. Moreover, since the stress t~~ is an

increasing function of F11 (or equivalently the strain) at the reference

• 

temperature, the stresst t~~ will decrease when 8 increases for fix:d F11.

- 
- However, if we consider (3 . 14) , an opposite effect will occur when t11 is

sufficiently large, in view of the factor

• 

*preceding ~ . Thus, above a given value of strain , the effect of the factor

9/9
~ 
will dominate and give rise to thermoelastic inversion. it is essentially

due to the absence of 9/8
~ 
that the relation (3.3) does not include the feature

associated with thermoelastic inversion.

• In order to gain a better understanding of the decomposition (3.2) of the

specific free energy, we first calculate the expression for the specific internal

energy in the case of an isotropic rubber for which the thermal stretch is

~(e) = u(9)i (3.7)

where 1 is the unit tensor. For an elastic material, the constitutive relations

for the specific entropy T~ and the specific internal energy e in terms of’ the

• t *The str ess t11, associated with the one-dimensional homogeneous extensional
deformation, is the c~~~onent of the stress T* which occurs on the right-hand
sides of (3.3) and (3 .14). Recall that the d.’~

’pendence of T* upon ~ %* is obtained
fr om isothermal exper iments at the temperatur e 

~~

L 15.
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• free energy response function ~~= ~(c,e) are given by
A

• 
- -

~~~~~~~~
- 

~~ 

A 

—
, 

(3.8)

c $+8l
~
=
~~~~

8
~~~ 1 

0
2 ..i(i

)1 
.

F F

Aft er identifying the right-hand sides of (3.8)2 and (3.2), we obtain

c = [~u/~~/ (u/~ )] - tr~2 ~ •$_ C~ 3 - ~
2 
~~ (3.9)

• Next, we define a function B by

= - ~2 ~~ (3.10)

and after recalling the expression for the stress in terms of the free energy

response we have

*e *tr T = p ~~~
— tr(2 

* £ 3 (3 11)

• and then (3.9) can be expressed as

p€ = tr T + p B ( 9 )  . (3.12)

- • According to (3.12), ~~(~~ ) represents the specific internal energy of the

rubber at zero stress, and. (3.10) provides a way of calculating B(e) in terms

of the specific heat. Also, the form of (3.12), permits us to decide (by

• • 

direct calculations) on the relative importance of the two terms on its right-

hand side. The calculations that follow are based on the data of Wood. and

•~ Martin (9) which were also adopted by Chadwick [Li]. Thus, at a reference

temperature e0 -~ 98 K, we have

- density p0=906.5 Kg m
3

volume coefficient of thermal expansion a0=6.36x
1O~~(

0
KY1

-
- 

spec ific heat at constant deformation c = 1662 J Kg~~(°K)~~ .

-

~~~~~~~~~~~ 
s~~~~• _~~~~~ - • ~~

-t —•—••-—~~~~~ -~ • — • -~~~~~~—-— ~~~~ • _ • _
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In terms of the above data, in the neighborhood of = 298 0K we have

u = 1+~~~~(O-80) , ~~~~~~~ ,

• 
= ~ ~[[i + 

~ ~(e- e~
)] 

~~~ 
[1 +

• 
~ 4 (1+ (

~~~ 
- 
~
)(e-o~

)] ~ 298(f)

Then , with the use of (3.12), we can readily obtain for c the estimate

~ (1/298) tr T +

- 

• 
= f (~~ 

6.36 X lO~~ X 298 X 1.013 x 10~ )tr T+ 906.5 x 1662 (e-e ) 3

~ 6. li x 103 tr T+l.5xl06($-e ) (3.13)

where T is expressed in atm., 
~
°-°

~~ 
in °K and ~ 

~~t ~~-2

Since the second term on the r ight-hand side of (3.13) dominates the value

of ps , it is clear that the internal energy depends chiefly on the temperature

and is only slightly affected by the deformation (or the corresponding stress).

Moreover, in an isotropic and compressible material and for small strains, the - •

value of tr T and hence p€ depend only on dilatation or volumetric deformation.

These observations are in agreement with those arrived at by Chadwick [U] . In

fact, an estimate of the various terms in Chadwick’s expression for the specific

internal energy (Eq . (10), p. 376 of [ii]) give precisely the same result as
-

• above if one also assumes that tr T in (3.13) depends only upon volumetric

changes .

We close the present paper with an illustration, which shows how the

preceding development can be used to predict the behavior of natural rubber

in compressibility tests at various temperatures and compare the results with

•t
Th abbreviation ~~-2 stands for Ne-wton/(meter)2. -

•

17. 
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experimental values obtained by Wood and Martin [9]. Let the reference state

be specified by the reference temperature 80 and zero pressure. Then, in a

configuration corresponding to K~ maintained at the temperature O~, the pressure-

specific density (or the pressure-specific volume) relation takes the form

= p*(~2~) = p*(~ 
1 

~ , (3.114)
detF

where p0 is 
•the reference mass density at zero pressure and at temperature e

~
.

Wi th the help of (3. 1k)  and at an arbitrary temperature 9~ $
~~
, we find.

p = 2... ~~ p*( 
1 

*) = 
~~~ 

~~~ *(~~~) ~ (3.15)
~0 B0 •det F ~0 ~0 p

where p is the value of the specific mass density of the rubber at temperature

9 and at zero pressure. Various forms of’ the function p~ in (3.15) are discussed

by Chadwick [11, pp. 386-387]. As in [U], we may specify p~ by

*() = K ~ (X
m_l) , (3.16)

where the isothermal bulk modulus K is given by*

K=1.95 x 10
6 KPa

and m is a fixed parameter. Selecting the value zn=15 and 80=lO
°C, the values of

the specific volumes at various pressures and. temperatures (see Table i) are

calculated from (3.16). The corresponding experimental values of’ Wood and Martin

[9] are listed in Table 2. Comparison of the two tables indicates that the maximum

* 2 o
deviation occurs when the pressure is 500 Kg/cm and the temperature is 25 C, with

a relative error of 1.9x10 3. It is of interest to note that for Chadwick’s more

complicated model which does not have its starting point in an isothermal law at a

reference temperature, the maximum relative error for the specific volume is 0.5 x l0~~.

• 
~The abbreviation KPa stands for Kilo Pascal = 1000 Pascal = 1000 Newton/rn2

= (1000/9.81)Kg/m2.
‘The physical dimension of pressure is indicated here in Kg/cm2 in order to
conform with the data of Wood and. Martin (9]. 
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p(kg/om2 ) v (25°C) v (20°C) ~ (iO°C) v(o°cJ
0 1.1032 1.0998 1.0927 1.0857

100 1.0981 1.0946 1.0874 1.0803

200 1.0933 1.0898 1.0825 1.0753

300 1.0888 1.0853 1.0779 1.0706

400 1.0847 1.0811 1.0736 1.0663

500 1.0807 1.0771 1.0696 1.0622

• Table 1: Calculated specific volumes v = in 10~~ m
3/Kg.

The experiments performed by Wood and Martin [9] give the following
• data (Table 2).

p(~~/cm
2) v(25°C) v(20°C) ~(10°C) v(O°C)

0 1.1032 1.0998 1.0927 1.0857

100 1.0977 1.091414 1.0876 1.0807

200 1.0926 1.08914 1.0828 1.0763

• 300 1.0877 1.0846 1.0782 1.0719

~ A 400 1.0830 1.0801 1.0739 1.0678
- 500 1.0786 1.0756 1.0697 1.0637

Table 2: Specific volumes v = in l0~~ m
3/Kg obtained

by Wood and Martin {9~.

—
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